
 

1/20/2009 The Telegrapher Equations.doc 1/3 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Telegrapher Equations 
 
Consider a section of “wire”: 
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Q: No way! Kirchoff’s Laws tells me that: 
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How can the voltage/current at the end of the line (at 
z z+ Δ ) be different than the voltage/current at the 
beginning of the line (at z)?? 
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A:  Way.  The structure above actually exhibits some non-zero 
value of inductance, capacitance, conductance, and admittance! 
A more accurate transmission line model is therefore: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Now evaluating KVL, we find: 
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and from KCL: 
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Where: 
 

R = resistance/unit length 
L = inductance/unit length 
C = capacitance/unit length 
G = conductance/unit length 

 
∴ resistance of wire length Δz  is RΔz 
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Dividing the first equation by Δz, and then taking the limit as 
0zΔ → : 
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which, by definition of the derivative, becomes: 
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Similarly, the KCL equation becomes: 
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These coupled differential equations are quite famous! 
Derived by Oliver Heavyside, they are known as the 
telegrapher’s equations, and are essentially the 
Maxwell’s equations of transmission lines. 
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Although mathematically the functions ( , )v z t  and current 

( , )i z t  can take any form, they can physically exist only if they 
satisfy the both of the differential equations shown above! 
 

 


