The Telegrapher Equations

Consider a section of "wire":

Where:
$i(z, t) \neq i(z+\Delta z, t)$
$v(z, t) \neq v(z+\Delta z, t)$

Q: No way! Kirchoff's Laws tells me that:

$$
\begin{aligned}
& i(z, t)=i(z+\Delta z, t) \\
& v(z, t)=v(z+\Delta z, t)
\end{aligned}
$$

How can the voltage/current at the end of the line (at $z+\Delta z$) be different than the voltage/current at the beginning of the line (at z)??

A: Way. The structure above actually exhibits some non-zero value of inductance, capacitance, conductance, and admittance! A more accurate transmission line model is therefore:

Where:
$R=$ resistance/unit length
$L=$ inductance/unit length
$C=$ capacitance/unit length
$G=$ conductance/unit length
$\therefore \quad$ resistance of wire length Δz is R Δz

Now evaluating KVL, we find:

$$
v(z+\Delta z, t)-v(z, t)=-R \Delta z i(z, t)-L \Delta z \frac{\partial i(z, t)}{\partial t} \neq 0
$$

and from KCL:

$$
i(z+\Delta z, t)-i(z, t)=-G \Delta z v(z, t)-C \Delta z \frac{\partial v(z, t)}{\partial t} \neq 0
$$

Dividing the first equation by Δz, and then taking the limit as $\Delta z \rightarrow 0$:

$$
\lim _{\Delta z \rightarrow 0} \frac{v(z+\Delta z, t)-v(z, t)}{\Delta z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t}
$$

which, by definition of the derivative, becomes:

$$
\frac{\partial v(z, t)}{\partial z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t}
$$

Similarly, the KCL equation becomes:

$$
\frac{\partial i(z, t)}{\partial z}=-G v(z, t)-C \frac{\partial v(z, t)}{\partial t}
$$

These coupled differential equations are quite famous! Derived by Oliver Heavyside, they are known as the telegrapher's equations, and are essentially the Maxwell's equations of transmission lines.

$$
\begin{aligned}
& \frac{\partial v(z, t)}{\partial z}=-R i(z, t)-L \frac{\partial i(z, t)}{\partial t} \\
& \frac{\partial i(z, t)}{\partial z}=-G v(z, t)-C \frac{\partial v(z, t)}{\partial t}
\end{aligned}
$$

Although mathematically the functions $v(z, t)$ and current $i(z, t)$ can take any form, they can physically exist only if they satisfy the both of the differential equations shown above!

