The Teleagrapher Equations

Consider a section of “wire":
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Where:

(z,t)#i(z+Az,1)

v(z,t)=v(z+Az,T)

ma way! Kirchoff's Laws tells me that:

i(z,t)=i(z+Az,1)
v(z,t)=v(z+Az,1)

How can the voltage/current at the end of the line (at
Z + Az ) be different than the voltage/current at the
beginning of the line (at z)??




A: Way. The structure above actually exhibits some non-zero
value of inductance, capacitance, conductance, and admittance!
A more accurate transmission line model is therefore:
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Where:

R = resistance/unit length
L = inductance/unit length
C = capacitance/unit length
& = conductance/unit length

resistance of wire length Az is RAz

Now evaluating KVL, we find:

v(iz+Az,1)-v(z,1)=-RAzi(z,})- LAz o f;’f) =0

and from KCL:
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Dividing the first equation by 4z, and then taking the limit as

Az = 0:
or(z,t)

or
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which, by definition of the derivative, becomes:

V(1) p gy 2E1)
0z or
Similarly, the KCL equation becomes:
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B These coupled differential equations are quite famous!

e R %% Derived by Oliver Heavyside, they are known as the

g B, telegrapher's equations, and are essentially the
VR Maxwell's equations of transmission lines.
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Although mathematically the functions v(z,#) and current
/(z,1) can take any form, they can physically exist only if they
satisfy the both of the differential equations shown above!



